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Abstract. In this paper we consider a quantum optics model where two-mode quantum light cavity with
Kerr-like medium is coupled to an atom via two-photon process. The dynamical evolution of the system
is studied in terms of entanglement measured by quantum relative entropy. The entanglements for the
different bipartite partitions of the system, i.e., atom-two modes, mode-mode, mode-(atom+mode), are
calculated explicitly and interesting trade-off relations between the different kinds of entanglement can
be observed in different cases. The results show the entanglement between mode-mode is generally out of
phase with that between atom and two modes, even though the two modes do not interact directly, and
the Kerr-like medium prevents the atom and two modes from entangling.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 42.50.-p Quantum optics – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements

1 Introduction

Quantum entanglement, as a physical, is widely used in
quantum information processing [1]. In such physically
processing one usually needs to find the entanglement
properties and the way to control it, therefore studying
the dynamic properties of entanglement is useful for pro-
cessing quantum information. Recently entanglement in
many-body physical systems has been vastly studied, and
It has become clear that entanglement plays an important
role in the understanding of critical and thermodynami-
cal properties of quantum many-body systems [2]. Unlike
classical correlations, quantum entanglement cannot be
freely shared among many objects. For example, given a
triple of spin-1/2 particles A, B, and C, if particles A
and B are fully entangled in the state (| ↑↓〉 − | ↓↑〉) /√2,
then particle A cannot be simultaneously entangled with
particle C.

In investigating entanglement in many-body systems,
one of the issues is entanglement distribution amongst
subsystems, and the involved work was first reported by
Coffman, Kundu, and Wootters [3]. By investigating en-
tanglement in tripartite systems ABC with a Hilbert
space structure 2 ⊗ 2 ⊗ 2, they found that, the squared
concurrence (a measure of entanglement for a two-qubit
system [4]) between A and B, plus the squared con-
currence between A and C, cannot be greater than the
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squared concurrence between A and the pair BC. Now
it has become clear that the limitations on the distribu-
tion of quantum entanglement are known as monogamy
constraints [5]. While a great deal of progress has been
made in understanding special situations [5–7], these con-
straints have been difficult to quantify in the general cases
where the subsystems are continuous (for example, multi-
mode Gaussian states [7]) or infinitely dimensional. This
is because that the measure of entanglement has not been
completely resolved and is hard to compute. Therefore,
in some cases one resorts to concrete physical models,
such as spin chain systems [8] and quantum optics sys-
tems [9], to research this problem. In reference [9] Tessier
et al. investigated the entanglement sharing in the two-
atom Tavis-Cummings model by numerical calculation,
where the whole system constitutes a tripartite quan-
tum system with Hilbert space structure 2 ⊗ 2 ⊗ ∞. In
this paper we investigate the entangle dynamics and en-
tanglement distribution in a two-photon two-mode non-
linear Jaynes-Cummings model. Different from the pre-
vious model, our system, in a Hilbert space with tensor
product structure 2⊗∞⊗∞, involves two modes of cav-
ity field and a two-level atom surrounded by a nonlinear
Kerr-like medium in the cavity. Kerr-like medium can be
useful in many aspects, such as detection of nonclassi-
cal states [10], quantum nondemolition measurement [11],
investigation of quantum fluctuations [12], generation of
entangled macroscopic quantum states [13], and quantum
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information processing [14,15]. In particular, the influence
of Kerr-like medium on the entanglement in a quantum
optics system was considered [16], however those stud-
ies are limited to the entanglement between a atom and
a single mode field. Here we investigate the influence of
a Kerr-like medium on the distribution of entanglements
among different bipartite subsystems. The merit of our
paper is that the amount of entanglement can be com-
puted in terms of quantum relative entropy [17], therefore
one can clearly see the entanglement distribution among
different subsystems.

The remainder of this paper is organized as follows.
The model is given in Section 2. The third part gives the
our main results, that is, the entanglement distribution
between subsystems. The paper ends in Section 4 with a
conclusion.

2 Two-photon two-mode nonlinear
Jaynes-Cummings model and time evolution
for system

Our system is as follows. An effective two-level atom,
whose exited level is |e〉 with energy Ee and ground level
|g〉 with energy Eg, interacts with two modes (with fre-
quencies ω1 and ω2) of quantum light field inside a non-
linear Kerr-like medium. In two-photon processes there
are more than two levels involved, but it is possible to
neglect them if we assume the condition ω1 + ω2 =
Ee −Eg(� = 1) is satisfied, and we consider the transition
frequencies between |e〉, |g〉 and the intermediate levels are
different from the frequencies of the modes. The Kerr-like
medium is modeled as an anharmonic oscillator coupled to
the two-mode cavity. Consequently, the effective Hamilto-
nian, in the adiabatic and rotating wave approximation,
reads [18]

H = (ga1a2|e〉〈g| +H.c.)

+
(
χ1a

†2
1 a

2
1 + χ2a

†2
2 a

2
2 +2

√
χ1χ2a

†
2a

†
1a2a1

)
, (1)

where a1 (a†1) and a2 (a†2) are annihilation (creation) op-
erators of the two modes, g is the coupling coefficient be-
tween the atomic levels and the two-mode field, here it is
a constant consider since the atom is trapped in the cavity
field, and χi(i = 1, 2) denotes the dispersive part of the
third-order nonlinearity of the Kerr-like medium. The fist
part in equation (1) denotes the interaction between the
atom and the two-mode field, the second part with three
non-linear terms represents the nonlinearly coupling be-
tween the two modes and the Kerr-like medium. The first
two nonlinear part are similar to the ones appearing in the
case of one mode, while the third one is a bilinear connec-
tion between the two modes. This bilinear interaction can
be used to generate Schrödinger cat states [13] and fulfill
quantum teleportation [15].

We assume that the atom and the cavity are initially
disentangled, such that the initial state for the total sys-
tem is of the form

|ψ(0)〉AF = |ϕ(0)〉A ⊗ |φ(0)〉F , (2)

where the initial atomic state is in the superposition of
excited state and ground state |ϕ(0)〉A = cos(θ/2)|e〉 +
sin(θ/2)|g〉, the cavity is initially in one type of two-mode
SU(1,1) coherent states [19]

|φ(0)〉F = |ξ, 1
2
(1 + q)〉

=
∞∑

n=0

(
1 − |ξ|2

) 1+q
2

√
(n+ q)!
n!q!

ξn|n+ q, n〉, (3)

which is the eigenstate of the operator a†1a1−b†1b1 with the
corresponding eigenvalue q(= 0, 1, 2...). For the case q = 0
it is the two-mode squeezed vacuum state. For q �= 0 it is
Perelomov coherent state, which is obtained by the action
of the two-mode squeeze operator on the number state
|q, 0〉 [20].

The total wave function of the combined quantum
system is determined by Schrödinger equation with the
Hamiltonian given by equation (1) and initial condi-
tion (2). At any time t ≥ 0 the wave function is ex-
pressed as

|ψ(t)〉AF =
∞∑

n=0

[An(t)|e〉 +Bn(t)|g〉]A |n+ q, n〉F , (4)

where
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B0(t) = f0 sin
(
θ

2

)
exp(−ic0t), (5)

with

cn = χ1(n+ q)(n+ q − 1) + χ2(n− 1)n
+ 2

√
χ1χ2(n+ q)n,

∆n = (cn+1 − cn)2 + 4g2(n+ 1)(n+ 1 + q),

fn =
(
1 − |ξ|2)

1 + q

2

√
(n+ q)!
n!q!

ξn. (6)

Taken as a whole, the system in an overall pure state con-
stitutes a tripartite quantum system including an atom
and two modes in a Hilbert space with tensor product
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structure 2 ⊗ ∞ ⊗ ∞. If we take the atom as one sub-
system with two dimensions, two-mode cavity as another
subsystem with infinite dimensions, then the final state of
the whole system with tensor product structure 2 ⊗ ∞,
can be rewritten as the form of Schmidt decomposition

|ψ(t)〉AF =
√

Π+|ϕ+〉A|φ+〉F +
√

Π−|ϕ−〉A|φ−〉F , (7)

here |ϕ±〉A(|φ±〉F ) are the eigenvectors for density matrix
of the atom ρA = TrFρAF (cavity ρF = TrAρAF ), Π± are
the corresponding eigenvalues.

3 Entanglement distribution in the system

We first review on the measures of entanglement. There
are a number of measures to quantify the amount of en-
tanglement [4,17,21], and each measure has its limits. For
a pure state ρAB with two subsystems A and B, the von
Neumann entropy of the reduced density operators

S(ρAB) = −Tr(ρi log2 ρi) (i = A,B), (8)

is a good measure of entanglement. It takes from zero for a
disentangled pure state to one for a maximally entangled
one. However, for mixed states ρAB von Neumann entropy
fails, because it can not distinguish classical and quantum
mechanical correlations. Another good measurement is
called entanglement of formation (EOF) [21], which is de-
fined as E(ρ) = mini piS(|ψi〉〈ψi|), where the minimum is
taken over all possible decompositions ρ =

∑
i pi|ψi〉〈ψi|.

For some special case, i.e., 2⊗2 states, the EOF is obtained
analytically in terms of concurrence [4], but in general it
is difficult to get an analytical result. In this paper the
amount of entanglement is measured by quantum relative
entropy of entanglement defined as [17]

E(ρ) = min
σ∈D

S(ρ||σ), (9)

where S(ρ||σ) = Tr [ρ (log2 ρ− log2 σ)], is quantum rel-
ative entropy, the minimum is taken over D, the set of
all disentangled states. Just like EOF, relative entropy
of entanglement reduces to the von Neumann entropy of
either subsystem for the bipartite pure states, but hard
to calculate for general mixed states except some special
cases. Now we give a theorem suitable for us to calculate
the entanglement between two modes, which states as fol-
lows [22].

If a bipartite quantum state is given by the form

ρ =
∑

an1,n2 |αn1βn1〉〈αn2βn2 | , (10)

then relative entropy of entanglement for the state is
given by

E(ρ) = −
∑

an,n log2 an,n − S(ρ), (11)

and the disentangled state that minimizes the relative en-
tropy is σ =

∑
n an,n|αnβn〉〈αnβn|, |αn〉 and |βn〉 are or-

thonormal states of each subsystem, S(ρ) = −Tr(ρ log2 ρ)
is the von Neumann entropy mentioned above.

Our system involves four nonequivalent partitions of
entanglement: (i) atom-two modes entanglement, EA,F1F2 ;
(ii) mode-(atom+mode) entanglement, EFi,AFj (i, j =
1, 2, i �= j); (iii) mode-mode entanglement, EF1,F2 ; and
(iv) mode-atom entanglement, EA,Fi (i = 1, 2). It is
noted that the mode-atom entanglement is always zero,
since the density matrix of atom and one mode is writ-
ten as the form of their tensor products ρAF1(2) =∑

n pn(|ϕn〉〈ϕn|)A ⊗ (|n + q(n)〉〈n + q(n)|)F1(2) , where
|ϕn〉A = cos(αn)|e〉 + sin(αn) exp(iγn)|g〉 denotes the
atomic state, and

∑
n pn = 1.

In the next section we will investigate the entangle-
ments of the cases (i), (ii) and (iii), respectively.

3.1 Atom-two modes and mode-(atom+mode)
entanglements

Under the condition that the system is in an overall
pure state, atom-two modes entanglement and mode-
(mode+atom) entanglement can be calculated by applying
equation (8), respectively,

EA,F1F2 = −Π+ log2 Π+ − Π− log2 Π−, (12)

and

EF1,AF2 = S(ρF1),
EF2,AF1 = EF1,AF2 , (13)

where Π±, the eigenvalues of the density matrix ρA, are
given by

Π+ =
1
2

{
1 +

[
1 + 4

(∣∣∣
∑

n

An(t)B∗
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1/2}

Π− = 1 − Π+. (14)

The time evolutions of the entanglements for different con-
ditions, are shown in Figures 1–3. For clarity, Two cases
are considered with respect to the Kerr-like medium.

Case 1. Without Kerr-like medium

Two-mode squeezed vacuum state cavity field. Figure 1a is
plotted for the case where q = 0, χ1 = χ2 = 0, θ = 0,
ξ = 0.6. We can see that: (1) both entanglements evolve
periodically with the period π; (2) atom-two modes en-
tanglement is roughly in phase with mode-(atom+mode)
entanglement. In particular, when gt = t1 ≡ (2m+ 1)π/2
(m = 0, 1, 2, ...) both get the minimum values; at gt =
t2 ≡ mπ the mode-(atom+mode) entanglement obtains
the maximal value, while the atom-two modes entan-
glement sharply decreases to the minimum value zero.
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Fig. 1. Entanglement distribution among different subsys-
tems without Kerr-like medium and ξ = 0.6. Solid curve
(blue), atom-two modes entanglement EA,F1F2 ; dotted curve
(red), mode-mode entanglement EFi,Fj ; dashed curve (black),
mode-(atom+mode) entanglement EFi,AFj . (a) Two-mode
squeezed vacuum state field, excited atomic state. (b) Two-
mode Perelomov coherent state field, excited atomic state. (c)
Two-mode Perelomov coherent state field, (|e〉+|g〉)/√2 atomic
state. A color version of the figures is available in electronic
form at http://www.eurphysj.org.

In fact, this can seen from equations (4–6). At time
gt = t1, it is easy to find that the state of the atom and
two-mode cavity field is

|ψ(t1)〉AF = |ϕ(t1)〉A ⊗ |φ(t1)〉F , (15)
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Fig. 2. Entanglement distribution among different subsystems
in the presence of Kerr-like medium with χ1 = χ2 = 0.2
and ξ = 0.6. Solid curve (blue), atom-two modes entangle-
ment EA,F1F2 ; dotted curve (red), mode-mode entanglement
EFi,Fj ; dashed curve (black), mode-(atom+mode) entangle-
ment EFi,AFj . (a) Two-mode squeezed vacuum state field, ex-
cited atomic state. (b) Two-mode Perelomov coherent state
field, excited atomic state. A color version of the figures is
available in electronic form at http://www.europhysj.org.

here the state of atom and cavity field are given by, re-
spectively,

|ϕ(t1)〉A =
[
1 + |ξ|2]− 1

2 (−iξ|e〉 + |g〉),

|φ(t1)〉F =
√

1 − |ξ|4
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n=0

(−1)nξ2n

×
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2
|2n, 2n〉 − i cos

θ

2
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)
.

(16)

Therefore the atom and two modes are disentangled, and
the atomic information encoded in θ is transferred to the
cavity field. At time gt = t2, they are also disentangled,
the states for the subsystems are given by

|ϕ(t2)〉A = sin
θ

2
|g〉 − cos

θ

2
|e〉,

| φ(t2)〉F =

⎧
⎨
⎩

∑
n fn(−1)n | n, n〉 for m = odd

∑
n fn | n, n〉 for m = even.

(17)
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Fig. 3. Same as Figure 2, except for χ1 = χ2 = 1. A
color version of the figures is available in electronic form at
http://www.europhysj.org.

Contrasted to the case of t1, atomic information is not
transferred to cavity field, the atomic state is varied by
phase π. It is noted that equations (16) and (17) give the
different information about the subsystems, even the atom
and cavity field are disentangled in both cases. According
to equations (16, 17), mode-(atom+mode) entanglements
at t1 and t2 are calculated as, respectively

EFi,AFj (t1) = − log2

(
1 − ∣∣ξ∣∣4

)
− 4

∣∣ξ∣∣4

1 − ∣∣ξ∣∣4
log2 |ξ|

−2 sin2 θ

2
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2

∣∣− 2 cos2
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2
log2

∣∣ cos
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2

∣∣,
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log2

(
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)

−
∣∣ξ∣∣2

1 − ∣∣ξ∣∣2
log2

∣∣ξ∣∣2

1 − ∣∣ξ∣∣2
, (18)

It is easy to see that the latter is greater than the former
for θ = 0, ξ = 0.6.

Two-mode Perelomov coherent state cavity field. The
entanglements are no longer periodic due to the non-
symmetry of the two modes, the atom and the cavity
are always entangled during the interaction. The entangle-
ments oscillate, but the amplitude is gradually weakened
with the time. As a result the atom-two modes entangle-
ment gradually increases, while mode-(atom+mode) en-

tanglement decreases a little as time goes on. Finally
EA,F1F2 ≈ 1, the atom and two modes are almost maxi-
mally entangled. Therefore we can get a maximally entan-
gled state of atom and cavity if given enough long time. It
is interesting to note that if the atomic state is initially in
or approaches the state |s〉 = (|e〉 + |g〉) /√2 the oscilla-
tions of entanglements are reduced greatly, the entangle-
ment of mode-(atom+mode) is approximately constant.
This is because the state |s〉 is a dressed-state(stationary
state), which shows no dynamic evolution. The small vi-
brations of the quantum relative entropy in the case come
from the contribution of the interaction between the atom
and cavity.

Case 2. In the presence of Kerr-like medium

Now we turn to the effects of Kerr-like medium. To vi-
sualize the effects of the Kerr-like medium on the entan-
glement, we set different values of χi/g with all the other
parameters with the same values as in Figure 1. The re-
sults are presented in Figures 2 and 3 for weak and strong
nonlinear interactions of the Kerr-like medium with the
field modes, respectively.

Comparing with Figure 1a and Figures 2a, 3a, we find
that when the initial state for cavity is two-mode squeezed
state, the nonlinear interaction of Kerr-like medium leads
to the nonperiodicity of entanglement evolution, the atom
and cavity are always entangled.

From Figure 1b and Figures 2b, 3b, where the cavity
is initially in the Perelomov coherent state for the two-
mode field, it follows that mode-(atom+mode) entangle-
ment can not gradually increase as time goes on, but reach
a stable value, in the vicinity of which it oscillates with a
tiny amplitude, and cannot reach the maximum value 1
even given long time evolution. For the entanglement be-
tween one mode and remainder, it is almost unchanged.
Those results imply that the nonlinear interaction pre-
vents the atom and two modes from disentangling.

We also show that the intensity of the nonlinear in-
teraction has significantly influence on the entanglement
distribution. Contrasted to the strong nonlinear interac-
tion, the weak nonlinear interaction increases the min-
imum value of atom-two modes entanglement and the
sustaining time of the maximum atom-two modes entan-
glement, as a result the atom and field maintain strongly
entangled. With the increase of the nonlinearly coupling
strength of the Kerr-like medium with the field modes, the
entanglement between the atom and field reduces. The re-
sults are in accord with those given in [16]. For the mode-
(atom+mode) entanglement, it is approximately a con-
stant in the presence of strong nonlinear interaction of
the Kerr-like medium with the field modes. We will give
the reason in the next section.

3.2 Mode-mode entanglement

The final bipartite partition of entanglement is the one
between two modes F1 and F2. The system F1F2 is ob-
tained by tracing over the atom. Different from the pure
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state bipartite systems such as A − (F1F2), Fi − (AFj),
the two modes system F1 − F2 is generally a mixed state
in a Hilbert space with tensor product structure ∞⊗∞,

ρF1F2 =
∞∑

k,n=0

ak,n|k + q, k〉〈n+ q, n|, (19)

where ak,n = AkA
∗
n +BkB

∗
n. It can be seen that the den-

sity matrix of equation (19) takes the form given by equa-
tion (10). Therefore it is possible to compute numerically
the mode-mode entanglement EF1,F2

EF1,F2 = −
∞∑

n=0

an,n log2 an,n − S(ρF1F2). (20)

The middle (black) curves in Figures 1, 2 and 3 give the
time evolutions of the mode-mode entanglement for the
different initial conditions. The two modes coupled to a
single atom can change the entanglement between them,
even when they do not interact directly. From all fig-
ures, we find that the mode-mode entanglement is always
out of phase with atom-two modes entanglement, that is,
the mode-mode entanglement decreases (increases) at the
time when the atom-two modes entanglement increases
(decreases). The results can be interpreted as follows. The
two-mode cavity is considered as a system, and the single
atom as the bath of the system. The interaction between
cavity field and atom leads to the entanglement between
them, in turn, the entanglement between them impairs
that between two modes, even the two modes do not in-
teract directly. If the atom is regarded as the environment
of two-mode cavity, the decoherence of two modes is in-
duced by the environment. In order to see the effect of
Kerr-like medium, we consider the following two cases.

Case 1. No Kerr-like medium

We first consider the case of no Kerr-like medium. For cav-
ity initially being in two-mode squeezing state, the evo-
lution of mode-mode entanglement is periodic. At time
gt = t1 and gt = t2, the states of the two modes are given
by equations (16, 17), the corresponding entanglements
read

EF1,F2(t1) = EFi,AFj (t1),
EF1,F2(t2) = EFi,AFj (t2). (21)

It is noted that mode-mode entanglement and atom-two
modes entanglement can not simultaneously archive the
maximum values. For two-mode Perelomov coherent state
of the initial field, i.e., q �= 0, the two-mode entanglement
is not periodic, but gradually decreases with the time.
Given long time scale, two modes is minimally entangled.

Case 2. Kerr-like medium

Figures 2 and 3 show the influence of Kerr-like medium
on the mode-mode entanglement. The mode-mode entan-
glement does not exhibit the periodicity (q = 0) or the

tendency of gradual reduction with time (q �= 0). After
some decrease, the two modes entanglement oscillates lit-
tle in the vicinity of some value and two modes possess
large amount of entanglement during the time evolution
due to the modulation of the nonlinear interaction of Kerr-
like medium with the two modes. If the coupling between
Kerr-like medium and two-mode field is much stronger
than the coupling between the single atom and the two-
mode field, i.e., χi/g � 1, the entanglement between two
modes retains unchanged, and the coherence of two modes
keeps well. This is because that, in this situation the atom
and two-mode field are approximately decoupled, thus all
partitions of entanglements are unchanged.

4 Conclusion

In summary, we investigate the entanglement distribution
in a quantum optics system with the structure 2⊗∞⊗∞.
The entanglements between different two subsystems are
numerically calculated. By the numerical results, we an-
alyze the time evolutions of entanglements in different
cases. (1) In the absence of Kerr-like medium, if the ini-
tial cavity field state is two-mode squeezed state, the
evolutions for different partitions of entanglements are
periodic, and the mode-mode entanglement and mode-
(atom+mode) entanglement are equal when the atom and
the cavity are disentangled. If the initial sate of field is
Perelomov coherent state, the atom-two modes entangle-
ment is out of phase with mode-mode entanglement. The
atom and two modes become more and more strongly en-
tangled as time goes on, while the two modes get more and
more weakly entangled. (2) In the presence of Kerr-like
medium, the time evolutions for entanglements are signif-
icantly different, the entanglement between atom and field
can not get more entangled, the two modes maintain large
amount of entanglement, and the mode-(atom+mode) en-
tanglement changes little during the evolution. When the
coupling between the Kerr-like medium and field is much
stronger than that between the atom and field, all en-
tanglement between two subsystems are approximately
unchanged. (3) The paper also gives the simple interpre-
tation of what are mentioned above.

The paper does not consider decoherence effects asso-
ciated with atomic spontaneous emission and with cavity
decay. The state of the system is described by its master
equation, and the explicit state of the whole system, usu-
ally a mixed state, is hardly given in the general case. In
the presence of decay, another problem is whether the en-
tanglement is analytically expressed in terms of quantum
relative entropy. In fact any mixed system can be purified
a pure one by adding another system, therefore one can
research entanglement distribution in the larger space of
the initial system plus the added system, which is beyond
our scope.
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